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Summary of rules for uncertainty propagation

This document is meant to be a concise guide on
the propagation of uncertainties in calculations – an
important skill for your PHY 151/152 Practicals and
beyond. For further information, students are referred
to the Uncertainty modules of the Practicals website,
or to a textbook on measurements and uncertainties1.

1 Generalities

Throughout this document, the uncertainty on a
quantity x is denoted by ux , with ux > 0.

Uncertainty Propagation First, a word on what is
meant by uncertainty propagation. Any measured
quantity has an uncertainty associated with it2; in-
deed, it is fair to say that a measurement without an
uncertainty has no meaning. This uncertainty would
have been estimated or calculated by some means;
please refer to other references for details on how un-
certainties are estimated and calculated.

Typically, one would like to do something of in-
terest with this measurement, like calculating sec-
ondary quantity to better interpret the experiment
or to compare with expectations. Clearly, such a sec-
ondary quantity should also carry an uncertainty, like
the primary quantity on which it depends. The set of
principles for determining the uncertainties on such
secondary, calculated quantities are referred to as un-
certainty propagation.

Addition in Quadrature The uncertainty propaga-
tion rules described herein use addition in quadra-
ture when combining uncertainties from several mea-
surements. This prescription, which may seem sur-
prising at first, is in fact the result of a proper, proba-
bilistic treatment of uncertainties: remember that the
uncertainty on a measurement is the estimated stan-
dard deviation of the underlying probability distri-
bution, assumed to be a Gaussian. For this reason,
a secondary quantity that is calculated from a mea-
sured value should also be interpreted as a Gaussian-
distributed value.

It turns out that when Gaussian-distributed val-
ues are combined, their standard deviations com-
bine in quadrature: this fact underpins the formulae
presented in this document. Importantly, this holds
true provided the different quantities are indepen-
dent, probabilistically speaking. Otherwise, these un-

certainty propagation rules are not valid.

Reporting Uncertainties We usually report uncer-
tainties with one significant digit; for example, (5.9±
0.4)cm, where 5.9cm is called the measurand and
0.4cm is the uncertainty. Then, the number of signif-
icant digits in the measurand is set by the decimal
place of the uncertainty. For instance, if a calculation
yields the quantity (13.367±0.812)s, then it is reported
as (13.4±0.8)s.

This rule is not ironclad, however: in cases where
rounding the uncertainty to one significant digit
would change its value by a large percentage, it may
be preferable to leave two significant digits. In that
case, the number of significant digits in the measur-
and is set by the last decimal place of the uncer-
tainty. For example, it would be reasonable to report
(13.345± 0.149)kg as (13.35± 0.15)kg, rather than as
(13.4±0.1)kg.

In all cases, it is best to not round off values of both
measurand and uncertainty until the very end of a cal-
culation. This could be achieved, for instance, by stor-
ing them in your calculator’s memory.

2 Addition and subtraction rule

If c is the sum or difference of a and b, that is to say

c = a ±b, (1)

then the uncertainty uc on c is given by the relation

uc
2 = ua

2 +ub
2. (2a)

It is then trivial to solve for uc and obtain

uc =
√

ua
2 +ub

2. (2b)

This rule can be iterated to arrive at the following
result for a string of additions and/or subtractions:

c = a1 +a2 +·· ·−b1 −b2 −·· · (3)

uc
2 = ua1

2 +ua2
2 +·· ·+ub1

2 +ub2
2 +·· · . (4)

3 Multiplication and division rule

If c is the product or the quotient of a with b, that is to
say

c = ab (5a)

or
c = a

b
, (5b)

1For instance, Measurements and their Uncertainties: A Practical Guide to Modern Error Analysis by Ifan Hughes and Thomas Hase
(2010).

2Well, almost any – see the remark in section 6.
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then the squared relative uncertainty3 of c is given by
the relative uncertainties of a and b added in quadra-
ture: (uc

c

)2
=

(ua

a

)2
+

(ub

b

)2
. (6a)

It is then a trivial matter to solve for the uncertainty
uc :

uc = |c|
√(ua

a

)2
+

(ub

b

)2
. (6b)

Once again, the rule is easily iterated in the case of
repeated multiplication and division:

c = a1a2 . . .

b1b2 . . .
(7)

(uc

c

)2
=

(
ua1

a1

)2

+
(

ua2

a2

)2

+·· ·

+
(

ub1

b1

)2

+
(

ub2

b2

)2

+·· · .

(8)

4 General case: the derivative rule

4.1 Functions of a single variable

The derivative rule provides a way to propagate un-
certainty in the case of an arbitrary function. The idea
is that for small ux , the ratio uy /ux is approximately
the same as the slope dy/dx, which we can use to find
uy .

Let y = f (x). Then, the uncertainty on y is

uy =
∣∣∣∣d f

dx

∣∣∣∣ux . (9)

This rule has an intuitive interpretation: the uncer-
tainty interval on the y axis is found by simply scaling
that on the x axis by the slope of f near x (presuming
the linear approximation of f near x is good on that
uncertainty interval).

4.2 Functions of multiple variables

Let y = f (x1, . . . , xn), where n is a natural number.
Then,

uy
2 =

(
∂ f

∂x1

)2

ux1
2 +·· ·+

(
∂ f

∂x2

)2

uxn
2. (10)

It is easy to show that the rules from sections 2 and 3
are special cases of this one.

5 Examples

5.1 Addition and subtraction

Suppose we seek the vertical displacement of a pro-
jectile fired straight up, from its point of departure
to its maximum height. The ball was put in motion
at a height of yi = (14.2±0.5)cm. Its highest altitude,
measured in flight (with less precision), was yf = (43±
2)cm. Then,

h = yf − yi

= 43cm−14.2cm

= 28.8cm.

(11)

The uncertaity on h is given by

uh =
√

(0.5cm)2 + (2cm)2

=
√

4.25cm2

= 2.061552813cm

(12)

Hence, following the rounding rules, we would report
the result as

h = (14±2)cm. (13)

This example illustrates a quality of addition
in quadrature: the largest uncertainties are made
even more dominant, which, in conjunction with the
rounding rules, means that smaller uncertainties can
often be ignored. Such cases should become recogniz-
able with practice.

5.2 Multiplication and division

Continuing with the previous situation, suppose we
now want to compute the work done on the projectile,
whose mass is m = (250±1)g, by the force of gravity.
This is given by

W =−mg h

=−(0.250kg)(9.81N/kg)(0.288m)

= 0.70632J.

(14)

Neglecting any uncertainy in g , uW is given by

uW =W

√(um

m

)2
+

(uh

h

)2

= 0.70632J

√(
1g

250g

)2

+ 4.25cm2

(28.8cm)2

= 0.70632J
√

1.6×10−5 +5.1239×10−3

= 0.70632J×0.0716933682

= 0.05063845982J

(15)

3We call relative uncertainty the ratio of the uncertainty with the measurand, i.e. ux /x. In contrast, the quantity ux is sometimes called
the absolute uncertainty for clarity.
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Note that in both equations 14 and 15, the unrounded
values for h and uh were used, and all intermediate
values were stored in calculator memory. Hence, we
find that

W = (0.71±0.05)J. (16)

In this case, we could have noticed from the start
that the relative uncertainty on h is far greater than
that on m, so the latter could have safely been ignored
without affecting the final answer.

5.3 Functions of a single variable

Suppose y = sinθ, where θ was measured to be (34.2±
0.5)◦. For y , we find

y = sin(34.2◦)

= 0.562083378.
(17)

According to equation 9, the uncertainty on y is given
by

uy =
∣∣∣∣ d

dθ
(sinθ)

∣∣∣∣uθ

= |cosθ|uθ.
(18)

This example allows us to make a crucial point
on uncertainties and trigonometric functions: since
calculus is done in radians, angles must be con-
verted to radians in the computation of uncertainties.
Hence, via the conversion 180◦ = πrad, we find uθ =
8.72664626×10−3 rad, and therefore

uy =
∣∣cos34.2◦∣∣8.72664626×10−3 rad

= 0.8270805743×8.72664626×10−3 rad

= 0.8270805743×8.72664626×10−3 rad

= 7.2176396×10−3.

(19)

Note that since angles expressed in radians are tech-
nically dimensionless, we freely dropped the ‘rad’ in
the last step. The final answer is reported as

y = 0.562±0.007. (20)

5.4 Functions of multiple variables

Suppose we seek to calculate the number of particles
which have not yet undergone some radioactive de-
cay at time t = (10.0±0.1)min, given by the formula

n = n0e−t/τ. (21)

The initial number of particles is somehow known to
be n0 = (3.81 ± 0.05) × 1020, and the time constant,
τ= (31.2±0.1)min. To use the rule of equation 10, we
must evaluate the following derivatives4:

∂n

∂n0
= e−t/τ = n

n0
, (22a)

∂n

∂t
=−n0

τ
e−t/τ =−n

τ
, (22b)

∂n

∂τ
= t

τ2 n0e−t/τ = t

τ2 n. (22c)

Hence, the uncertainty on n is conveniently expressed
as

un =
√(

n

n0

)2

un0
2 +

(n

τ

)2
ut

2 +
(

nt

τ2

)2

uτ
2

= |n|
√(

un0

n0

)2

+
(ut

τ

)2
+

(
uτt

τ2

)2

.

(23)

Explicit substitution of numerical values is straight-
forward, and is left as an exercise for the reader.

6 Additional remarks

For completeness, let us note that some physi-
cal quantities don’t have uncertainties associated to
them. This is the case for defined constants (such as
the speed of light in a vacuum and the permeability of
free space), as well as – in principle – quantities that
can only take on integer values, like the number of β
particles emitted from a radioactive source5.

4For convenience, we re-express the derivatives in terms of the quantity n, which will have been evaluated according to equation 21
beforehand.

5The example of subsection 5.4, however, illustrates that the latter point may be moot when dealing with macroscoping numbers of
particles, in which case experiments cannot resolve their discrete number.
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